Evaluation of a commercial EPID dosimetry system for pre-treatment QA, transit dosimetry and adaptive radiotherapy

Andrew J Reilly1 and Lynda Fennell2
1The Clatterbridge Cancer Centre, Merseyside, UK. 2University of Pittsburgh Medical Centre, Sandyford, ROI

Introduction
Dosimetry Check (DC) (Math Resolutions LLC, USA) is the first commercially available system for transit dosimetry using electronic portal imaging devices (EPIDs). It reconstructs the three-dimensional dose distribution delivered to the patient by back projecting exit portal images acquired during treatment onto a reference CT dataset [1]. A trial of the system was undertaken during September – November 2011 at The Clatterbridge Cancer Centre across 4 linear accelerators, all with all EPIDs: 2 Varian OBIIs, an Elekta Precise and a Novalign Tx. The potential of the system for both quality assurance measurements prior to treatment and transit dosimetry during treatment was assessed. All treatment sites and techniques making up the routine workload of the linacs were considered: static fields, dynamic and physically wedged fields, VMAT and stereotactic cranial and body treatments.

Materials and Methods
Dose deconvolution kernels were generated for each energy / EPID combination by measuring the EPID signal on the beam central axis over a range of field sizes and through different depths of water then fitting the sum of a series of 5 exponentials [1-3]. The process was streamlined by using the ARIA RT management system to deliver beams according to a predefined plan. An additional set of measurements was required for the Elekta physical wedge to account for the different energy spectrum at the detector due to beam hardening by the metal [3]. Reference plans were calculated in the treatment planning system (TPS) against a series of geometrical and anatomical phantoms. The kernels were validated by delivering the plans in both pre-treatment (phantom not present) and transit (phantom present) scenarios. Following validation, the DC was regularly used alongside Deltax (Scanditronix, Sweden) for pre-treatment VMAT QA and, where possible, transit dosimetry was utilised to verify delivery of the first fractions of all treatments undertaken over a two week period on all linacs where the system was installed.

A preliminary investigation of DC as part of an adaptive strategy was undertaken, calculating transit dose distributions on CBCT scans acquired during the same fraction.

Results and Discussion
Commissioning took around 1 hour per energy / wedge combination for CBCT datasets but further work is required to make the process efficient and allow visualisation of results of diodes and to some extent by modifying patient plans to accommodate the fields too large for the imaging panel. This can be mitigated through limited use of diodes and to some extent by modifying patient plans to accommodate the fields too large for the imaging panel. This can be mitigated through limited use of diodes.

Dosimetry Check had no impact on treatment times and the treatment staff preferred the measurement process to that involving diodes. A comprehensive cost-benefit analysis demonstrated that the EPID-based system was considerably more cost effective that using diodes. The main limitation with any EPID dosimetry system is the inability to measure fields too large for the imaging panel. This can be mitigated through limited use of diodes and to some extent by modifying patient plans to accommodate the verification process.

Calculations were successfully performed on CBCT datasets but further work is required to make the process efficient and allow visualisation of results summed over time.

Conclusions
Dosimetry Check is an efficient and viable solution for pre-treatment QA and in vivo dosimetry of conventional and VMAT treatments. Overall performance was at least as good as would be expected with diodes, but with less likelihood of false positives due to diode placement errors.

Further work is required to streamline workflow processes and to apply DC as a QA tool in an adaptive strategy. This is being performed in conjunction with the manufacturer.

Following completion of the trial The Clatterbridge Cancer Centre has invested in the Dosimetry Check product across all 12 linear accelerators.

Acknowledgements
The authors are grateful to Oncotherapy System Ltd, UK and Math Resolutions LLC, USA for the trial of the Dosimetry Check system and support during the commissioning process.

Viability Studies

The Clatterbridge Cancer Centre
NHS Foundation Trust

ESTRO 31, Barcelona, May 2012
andrew.reilly@clatterbridgecc.nhs.uk

References